University of

Waterloo

&

Waterloo ACM Programming Contest

September 17, 2005

Problem A: So you want to be 3-2ire?

Problem B: Ferry Loading Ill

Problem C: Pick-up Sticks

Problem D: Rock-Paper-Scissors Tournament

Problem E: Structural Equivalence

Problem A: So you want to be a 2"-aire?

The player starts with a prize of $1, and is askedquence aof questions.
For each question, he may

¢ quit and keep his prize.
e answer the question. If wrong, he quits with naghificorrect, the
prize is doubled, and he continues with the negstan.

After the last question, he quits with his prizeeTplayer wants to maximize
his expected prize.

Once each question is asked, the player is alalesess the probabilitythat
he will be able to answer it. For each questionassume thai is a random variable uniformly distributed oves thnge .. 1.

Input is a number of lines, each with two numbarsintegerl <n <30, and a rea <t < 1. Input is terminated by a line
containingo 0. This line should not be processed.

For each inpuh andt, print the player's expected prize, if he plagshibst strategy. Output should be rounded to freetonal
digits.

Sampleinput

coo
o wo

4 0.25

ONNRE R

o

Output for sampleinput

1. 500
1.357
2.560
230. 138

Don Reble

Problem B: Ferry Loading |11

Before bridges were common, ferries were used to
transport cars across rivers. River ferries, urthir
larger cousins, run on a guide line and are poweyed
the river's current. Cars drive onto the ferry frone
end, the ferry crosses the river, and the cardfrexit
the other end of the ferry.

There is a ferry across the river that can takars
across the river inminutes and return inminutes. A
car may arrive at either river bank to be transgzbhty
the ferry to the opposite bank. The ferry travels
continuously back and forth between the bankssg |
it is carrying a car or there is at least one caiting at
either bank. Whenever the ferry arrives at ondef t
banks, it unloads its cargo and loads up ¢ars that are waiting to cross. If there are rtlaa@n, those that have been waiting
the longest are loaded. If there are no cars vgaitimeither bank, the ferry waits until one arrjMeads it (if it arrives on the
same bank of the ferry), and crosses the rivewt#st time does each car reach the other side ofvibe?

The first line of input containg the number of test cases. Each test case beijins, &y m. m lines follow, each giving the
arrival time for a car (in minutes since the begigrof the day), and the bank at which the cavasri("left" or "right"). For each
test case, output one line per car, in the sanmer @sithe input, giving the time at which thatisamloaded at the opposite
bank. Output an empty line between cases.

You may assume that 0 < n, t<h10000. The arrival times for each test case aiglgtincreasing. The ferry is initially on the
left bank. Loading and unloading time may be caersd to be 0.

Sampleinput

2

2 10 10
0 left

10 left
20 left
30 left
40 | eft
50 left
60 |left
70 left
80 left
90 left
210 3

10 right
25 left
40 |eft

Output for sampleinput

10
30
30
50
50
70
70
90
90
110

30
40
60

Gordon V. Cormack

Problem C: Pick-up sticks

Stan has sticks of various length. He throws them one tiiha on the floor in a
random way. After finishing throwing, Stan triesfitad the top sticks, that is these
sticks such that there is no stick on top of th&tan has noticed that the last thrown
stick is always on top but he wants to know allgtieks that are on top. Stan sticks ar
very, very thin such that their thickness can bgewted.

Input consists of a number of cases. The dataafcin ease start with< n < 100000,
the number of sticks for this case. The followinlines contain four numbers each,
these numbers are the planar coordinates of thgoemd of one stick. The sticks are
listed in the order in which Stan has thrown th¥iou may assume that there are no
more than 1000 top sticks. The input is ended by#se witm=0. This case should
not be processed.

For each input case, print one line of outputrigthe top sticks in the format given in
the sample. The top sticks should be listed inrardevhich they were thrown.

The picture to the right below illustrates thetfcase from input.

Sampleinput K,

W
w s
N
] |

-2.08 4

w b
o
N
N
o

|

\

cooo
WN R
N

ONRFRPOWWRENEO

Output for sampleinput

Top sticks: 2, 4,
2,

5.
Top sticks: 1, 3.

Piotr Rudnicki

Problem D: BE THE CHAMPION

}-r.'_'] 5 PAPER SC]SS Toronto, Canada
INTERNATIONAL WORLD CHAMPIONSHIPS

Rock-Paper -Scissor s Tour nament

Rock-Paper-Scissors is game for two players, ABangho each choose, independently of the otherpbnack, paper, or
scissors. A player chosingaper wins over a player chosimgck; a player chosingcissors wins over a player chosimgper; a
player chosingock wins over a player chosirsgissors. A player chosing the same thing as the othereplagither wins nor
loses.

A tournament has been organized in which eachptfiyers play rock-scissors-paper games with each of the othgers -
k*n*(n-1)/2 games in total. Your job is to compute tie average for each player, defined as/ (w+) wherew is the number
of games won, anldis the number of games lost, by the player.

Input consists of several test cases. The firstdifinput for each case contalhs n <100 1 <k <100 as defined above. For
each game, a line follows containing pn1, p2, mp. 1< p1 < nand 1< p2 < n are distinct integers identifying two playersy m
and np are their respective moves ("rock", "scissors"paper"). A line containing 0 follows the lastttease.

Output one line each for player 1, player 2, andrsdhrough playen, giving the player's win average rounded to tlieamal
places. If the win average is undefined, outputCutput an empty line between cases.

Sample I nput

4
rock 2 paper
scissors 2 paper
rock 2 rock
rock 1 scissors
1

rock 2 paper

OFRPNNRFRREPEN

Output for Sample I nput

0.333
0.667

0. 000
1. 000

Gordon V. Cormack

Problem E: Structural Equivalence

In programming language design circles, there leas Imuch debate abo
the merits of "structural equivalence" vs. "namaiegjence" for type
matching. Pascal purports to have "name equivalebaeit doesn't; C
purports to have structural equivalence, but isdideAlgol 68, the atin of
programming languages, has pure structural equigale

A simplified syntax for an Algol 68 type definitias as follows:

type_def -> type T = type_expr
type_expr -> T | int | real | char | struct (field_defs)
field_defs -> T | field_defs T

In this syntax(T is a programmer-defined type name (in this probfemsimplicity, a single upper case letter). Rlaxt
symbols appear literally in the input, and zeronore spaces may appear where there are spacessiyntax.

Algol 68 type equivalence say that two types angvedent if they are the same primitive type orythee both structures
containing equivalent types in the same order.

Input consists of several test cases. Each testisassequence of Algol 68 definitions, as descrifbove, one per line. A line
containing "-" separates test cases. A line comgifi-" follows the last test case. The outputdach case will consist of
several lines; each line should contain a lisypétnames, all of which represent equivalent tygesh type name should
appear on exactly one line of output, and the nurabeutput lines should be minimized. The namesaiah list should be in
alphabetical order; the lines of output should &lsdn alphabetical order. Output an empty lineveen test cases.

Sample Input

type A = int

type B = A

type C = int

type X = struct (A B)

type Y = struct(B A)

type Z = struct(A 2)

type S = struct(A 9

type W= struct(B R
R = struct(C W

type
Output for Sample I nput

C
wZ

X 0>
<unw

Gordon V. Cormack

