Solution Sketches
for Fall 2021 UW Local ICPC Contest

Troy Vasiga

October 3, 2021



Problem E: Frogger

» Turn-by-turn simulation
» Maintain current state

» Could do some clever/efficient things, but not necessary



Problem D: Not Long Enough

» Add the reverse of all the vectors to the set of vectors (i.e.,
“negate” all vectors)

» Sort the vectors by angles to ensure that they are considered
in “roughly same direction” in order

> Add the vectors one at a time in sorted order, keeping track of
the total of all vectors so far

» Why does this work? Proof by diagram.



Problem D: Not Long Enough (cont'd)

» Consider the set of vectors V

v

Call the maximum vector v, formed by vectors in set M C V.

» The algorithm considers vectors sorted by angle, so it will
consider the ones whose angle is closer to the maximum
vector v together, away from other vectors whose angle is
further away (and thus more likely to make v shorter).

» Claim: any vector m that is in M should be included iff m is
within 90 degrees of the direction of v

» Proof by contradiction



Problem D: Not long Enough (cont'd)

angle btwn
_angle<90 vandv1>90

+ >
vz V-Vl >v



Problem D: Not long Enough (cont'd)

» Suppose vl is in M and it's angle is more than 90 away from
v.

» Removing v1 from M will make v even longer and contradict
the maximality of v.

» Suppose v2 is not in M and its angle is less than 90 away frm
V.

» Adding it to v would make v longer, again contradicting the
maximality of v.



Problem C: Bus Connections

» Chinese Remainder Theorem
> Need some bigints

» Use a reasonable language (i.e., not C++)
» Build them yourself in C++



Problem B: Noise

» Looks like a string matching problem, but KMP and
suffix{automata/trie/arrays} will not help us (solutions with
them will all be Q(n?)).

» Instead we will use FFT (which, coincidentally, is also used to
solve song-recognition in real life; although in a quite different

way).
» Consider the polynomial

p(x,y) =(x = y)(x =y +1)(x —y = 1).

Note that p(x, y) = 0 iff x = y. We will thus use p as a
“comparison”.

» Consider two arrays A and B of the same length, and we just
want to check if they "match”.

» They match iff A; € [B; — 1, B; + 1] for all i, or equivalently if
p(Ai, Bi) = 0 for all /.



Problem B: Noise (cont'd)

> A first idea could be to check if [0 = )", p(A;, Bj)], which is
almost correct (when A and B “match” this sum is 0, but this
sum can also be 0 otherwise). There are at least two ways to
fix this:
1. Consider p? instead, which is = 0 iff x = y and strictly positive
otherwise. Hence [0 = >".(p(A;, B;))?] iff offset x works.
2. Add some random weights. That is we consider
[0 =", ri* p(Ai, Bj)] where r; are independent random
integers from say [1, 1e9]. This works with very high
probability (1 —1/1e9).

» The model solution used (2), as it will in the end use fewer
FFT calls.



Problem B: Noise (cont'd)

> Now, if Ais longer than B, we want to calculate
[>; ri * p(Aisx, Bi)] for all offsets x. Note that this looks like
a convolution between A and (a reversed) B. If we expand the
product in the polynomial p, we will see that it suffices to
calculate terms of the form:

Z riAf—l—x B/q

i
for some p, g < 3, and then sum them together.

» To do this we can simply calculate a convolution (with FFT)
between (A?) and reversed (r;B'). We need to do a total of 6
such convolutions (or a bit more for solution (1)). After we
perform the 6 convolutions, we can simply sum the results
together (with appropriate coefficients), and we have
successfully calculated [Y; ri * p(Ajix, Bj)] for all offsets x,
which can be used to answer the problem.



Problem B: Noise (cont'd)

» Implementation-wise, numbers get really large (around
(1e6)*), and we subtract them, so the solution is not at all
numerically precise if we use normal FFT with floating points.
But we can do everything in Z, for a suitable primes p of size
1€9, and then everything is exact.

P> A similar idea can be used to solve “string matching with
wildcards” where one uses p(x, y) = (x — y)xy instead, so
that p(x,y) =0 iff x =y, or one of x or y = 0 (0 is the
wildcard value).



Problem A: Mountain Skyline

» Basic trigonometry

> Sorting
» Intersection of a line and cone

>
>
>

geometry is full of edge cases

3D geometry is more full of such edge cases

tricky since the line is not on a plane that is perpendicular to
the axis of the cone

therefore, we cannot just project the cone as a triangle

need to solve some quadratic equations



Problem A: Mountain Skyline

Why not just a 2d projection to a triangle?

>
| 2
>

Consider cone with radius 2, with observer 2v/2 from base
Altitude tangents form 2 — 2 — 21/2 triangle

Looking up to the cone at altitude 1, which has a circle of
radius 1

The triangle formed by this radius and tangent will have
hypotenuse 2v/2 and one edge 1, which cannot be similar to
the 2 — 2 — 24/2 triangle

Thus the cones “bulge out”

Icky



Next contests

» Winter 2022 Local contest: February (probably) 2022
» Spring 2022 Local contest: June (probably) 2022

» East Central North America Regionals: maybe November or
maybe not? NADC? NAC?



