
Solution Sketches
for Fall 2021 UW Local ICPC Contest

Troy Vasiga

October 3, 2021



Problem E: Frogger

I Turn-by-turn simulation

I Maintain current state

I Could do some clever/efficient things, but not necessary



Problem D: Not Long Enough

I Add the reverse of all the vectors to the set of vectors (i.e.,
“negate” all vectors)

I Sort the vectors by angles to ensure that they are considered
in “roughly same direction” in order

I Add the vectors one at a time in sorted order, keeping track of
the total of all vectors so far

I Why does this work? Proof by diagram.



Problem D: Not Long Enough (cont’d)

I Consider the set of vectors V

I Call the maximum vector v , formed by vectors in set M ⊆ V .

I The algorithm considers vectors sorted by angle, so it will
consider the ones whose angle is closer to the maximum
vector v together, away from other vectors whose angle is
further away (and thus more likely to make v shorter).

I Claim: any vector m that is in M should be included iff m is
within 90 degrees of the direction of v

I Proof by contradiction



Problem D: Not long Enough (cont’d)



Problem D: Not long Enough (cont’d)

I Suppose v1 is in M and it’s angle is more than 90 away from
v .

I Removing v1 from M will make v even longer and contradict
the maximality of v .

I Suppose v2 is not in M and its angle is less than 90 away frm
v .

I Adding it to v would make v longer, again contradicting the
maximality of v .



Problem C: Bus Connections

I Chinese Remainder Theorem
I Need some bigints

I Use a reasonable language (i.e., not C++)
I Build them yourself in C++



Problem B: Noise

I Looks like a string matching problem, but KMP and
suffix{automata/trie/arrays} will not help us (solutions with
them will all be Ω(n2)).

I Instead we will use FFT (which, coincidentally, is also used to
solve song-recognition in real life; although in a quite different
way).

I Consider the polynomial

p(x , y) = (x − y)(x − y + 1)(x − y − 1).

Note that p(x , y) = 0 iff x = y . We will thus use p as a
“comparison”.

I Consider two arrays A and B of the same length, and we just
want to check if they “match”.

I They match iff Ai ∈ [Bi − 1,Bi + 1] for all i , or equivalently if
p(Ai ,Bi ) = 0 for all i .



Problem B: Noise (cont’d)

I A first idea could be to check if [0 =
∑

i p(Ai ,Bi )], which is
almost correct (when A and B “match” this sum is 0, but this
sum can also be 0 otherwise). There are at least two ways to
fix this:

1. Consider p2 instead, which is = 0 iff x = y and strictly positive
otherwise. Hence [0 =

∑
i (p(Ai ,Bi ))2] iff offset x works.

2. Add some random weights. That is we consider
[0 =

∑
i ri ∗ p(Ai ,Bi )] where ri are independent random

integers from say [1, 1e9]. This works with very high
probability (1− 1/1e9).

I The model solution used (2), as it will in the end use fewer
FFT calls.



Problem B: Noise (cont’d)

I Now, if A is longer than B, we want to calculate
[
∑

i ri ∗ p(Ai+x ,Bi )] for all offsets x . Note that this looks like
a convolution between A and (a reversed) B. If we expand the
product in the polynomial p, we will see that it suffices to
calculate terms of the form:∑

i

riA
p
i+xB

q
i

for some p, q ≤ 3, and then sum them together.

I To do this we can simply calculate a convolution (with FFT)
between (Ap

i ) and reversed (riB
q
i ). We need to do a total of 6

such convolutions (or a bit more for solution (1)). After we
perform the 6 convolutions, we can simply sum the results
together (with appropriate coefficients), and we have
successfully calculated [

∑
i ri ∗ p(Ai+x ,Bi )] for all offsets x ,

which can be used to answer the problem.



Problem B: Noise (cont’d)

I Implementation-wise, numbers get really large (around
(1e6)4), and we subtract them, so the solution is not at all
numerically precise if we use normal FFT with floating points.
But we can do everything in Zp for a suitable primes p of size
1e9, and then everything is exact.

I A similar idea can be used to solve “string matching with
wildcards” where one uses p(x , y) = (x − y)xy instead, so
that p(x , y) = 0 iff x = y , or one of x or y = 0 (0 is the
wildcard value).



Problem A: Mountain Skyline

I Basic trigonometry

I Sorting
I Intersection of a line and cone

I geometry is full of edge cases
I 3D geometry is more full of such edge cases
I tricky since the line is not on a plane that is perpendicular to

the axis of the cone
I therefore, we cannot just project the cone as a triangle
I need to solve some quadratic equations



Problem A: Mountain Skyline

Why not just a 2d projection to a triangle?

I Consider cone with radius 2, with observer 2
√

2 from base

I Altitude tangents form 2− 2− 2
√

2 triangle

I Looking up to the cone at altitude 1, which has a circle of
radius 1

I The triangle formed by this radius and tangent will have
hypotenuse 2

√
2 and one edge 1, which cannot be similar to

the 2− 2− 2
√

2 triangle

I Thus the cones “bulge out”

I Icky



Next contests

I Winter 2022 Local contest: February (probably) 2022

I Spring 2022 Local contest: June (probably) 2022

I East Central North America Regionals: maybe November or
maybe not? NADC? NAC?


