Solution Sketches
 for Fall 2021 UW Local ICPC Contest

Troy Vasiga

October 3, 2021

Problem E: Frogger

- Turn-by-turn simulation
- Maintain current state
- Could do some clever/efficient things, but not necessary

Problem D: Not Long Enough

- Add the reverse of all the vectors to the set of vectors (i.e., "negate" all vectors)
- Sort the vectors by angles to ensure that they are considered in "roughly same direction" in order
- Add the vectors one at a time in sorted order, keeping track of the total of all vectors so far
- Why does this work? Proof by diagram.

Problem D: Not Long Enough (cont'd)

- Consider the set of vectors V
- Call the maximum vector v, formed by vectors in set $M \subseteq V$.
- The algorithm considers vectors sorted by angle, so it will consider the ones whose angle is closer to the maximum vector v together, away from other vectors whose angle is further away (and thus more likely to make v shorter).
- Claim: any vector m that is in M should be included iff m is within 90 degrees of the direction of v
- Proof by contradiction

Problem D: Not long Enough (cont'd)

Problem D: Not long Enough (cont'd)

- Suppose $v 1$ is in M and it's angle is more than 90 away from v.
- Removing $v 1$ from M will make v even longer and contradict the maximality of v.
- Suppose $v 2$ is not in M and its angle is less than 90 away frm v.
- Adding it to v would make v longer, again contradicting the maximality of v.

Problem C: Bus Connections

- Chinese Remainder Theorem
- Need some bigints
- Use a reasonable language (i.e., not $\mathrm{C}++$)
- Build them yourself in C++

Problem B: Noise

- Looks like a string matching problem, but KMP and suffix\{automata/trie/arrays\} will not help us (solutions with them will all be $\Omega\left(n^{2}\right)$).
- Instead we will use FFT (which, coincidentally, is also used to solve song-recognition in real life; although in a quite different way).
- Consider the polynomial

$$
p(x, y)=(x-y)(x-y+1)(x-y-1)
$$

Note that $p(x, y)=0$ iff $x=y$. We will thus use p as a "comparison".

- Consider two arrays A and B of the same length, and we just want to check if they "match".
- They match iff $A_{i} \in\left[B_{i}-1, B_{i}+1\right]$ for all i, or equivalently if $p\left(A_{i}, B_{i}\right)=0$ for all i.

Problem B: Noise (cont'd)

- A first idea could be to check if $\left[0=\sum_{i} p\left(A_{i}, B_{i}\right)\right]$, which is almost correct (when A and B "match" this sum is 0 , but this sum can also be 0 otherwise). There are at least two ways to fix this:

1. Consider p^{2} instead, which is $=0$ iff $x=y$ and strictly positive otherwise. Hence $\left[0=\sum_{i}\left(p\left(A_{i}, B_{i}\right)\right)^{2}\right]$ iff offset x works.
2. Add some random weights. That is we consider $\left[0=\sum_{i} r_{i} * p\left(A_{i}, B_{i}\right)\right]$ where r_{i} are independent random integers from say $[1,1 e 9]$. This works with very high probability ($1-1 / 1 e 9$).

- The model solution used (2), as it will in the end use fewer FFT calls.

Problem B: Noise (cont'd)

- Now, if A is longer than B, we want to calculate [$\sum_{i} r_{i} * p\left(A_{i+x}, B_{i}\right)$] for all offsets x. Note that this looks like a convolution between A and (a reversed) B. If we expand the product in the polynomial p, we will see that it suffices to calculate terms of the form:

$$
\sum_{i} r_{i} A_{i+x}^{p} B_{i}^{q}
$$

for some $p, q \leq 3$, and then sum them together.

- To do this we can simply calculate a convolution (with FFT) between $\left(A_{i}^{p}\right)$ and reversed $\left(r_{i} B_{i}^{q}\right)$. We need to do a total of 6 such convolutions (or a bit more for solution (1)). After we perform the 6 convolutions, we can simply sum the results together (with appropriate coefficients), and we have successfully calculated [$\sum_{i} r_{i} * p\left(A_{i+x}, B_{i}\right)$] for all offsets x, which can be used to answer the problem.

Problem B: Noise (cont'd)

- Implementation-wise, numbers get really large (around $\left.(1 e 6)^{4}\right)$, and we subtract them, so the solution is not at all numerically precise if we use normal FFT with floating points. But we can do everything in Z_{p} for a suitable primes p of size $1 e 9$, and then everything is exact.
- A similar idea can be used to solve "string matching with wildcards" where one uses $p(x, y)=(x-y) x y$ instead, so that $p(x, y)=0$ iff $x=y$, or one of x or $y=0$ (0 is the wildcard value).

Problem A: Mountain Skyline

- Basic trigonometry
- Sorting
- Intersection of a line and cone
- geometry is full of edge cases
- 3D geometry is more full of such edge cases
- tricky since the line is not on a plane that is perpendicular to the axis of the cone
- therefore, we cannot just project the cone as a triangle
- need to solve some quadratic equations

Problem A: Mountain Skyline

Why not just a 2 d projection to a triangle?

- Consider cone with radius 2 , with observer $2 \sqrt{2}$ from base
- Altitude tangents form $2-2-2 \sqrt{2}$ triangle
- Looking up to the cone at altitude 1 , which has a circle of radius 1
- The triangle formed by this radius and tangent will have hypotenuse $2 \sqrt{2}$ and one edge 1 , which cannot be similar to the $2-2-2 \sqrt{2}$ triangle
- Thus the cones "bulge out"
- Icky

Next contests

- Winter 2022 Local contest: February (probably) 2022
- Spring 2022 Local contest: June (probably) 2022
- East Central North America Regionals: maybe November or maybe not? NADC? NAC?

